Ignoring the evidence

Diagnosis of his wife's progressive multiple sclerosis would not have taken so long had doctors taken a proper history, says Dr David Wheldon

This is a personal story, but I am telling it because it illustrates much of what is wrong with medicine today. Lessons of the past - such as the necessity for intensive cross-disciplinary history taking - have been forgotten. And the intelligentsia of the individual practitioner has been subjugated by the notion of 'evidence-based medicine'. This Orwellian phrase means nothing more or less than conformity with currently accepted practice. In 1995, I married Sarah, an accomplished painter and violinist. One of our joys was walking in the countryside, often for long distances. In 2000, on a walking holiday in the Auvergne, Sarah noticed that she was dragging her right foot a little. Once back home, she saw her GP who sent her to an orthopaedic surgeon. He confidently made a diagnosis of congenital spinal stenosis. However, her condition deteriorated. In 2003, her GP referred her to a neurologist. In the months following the ordering of the MRI and the scan itself, her deterioration accelerated. She became unable to walk unaided, and her right arm progressively weakened until she was unable to paint or to write. She was numb from the waist down. She had slurred speech, difficulty thinking and was often tired. The scan revealed numerous white-matter hyperintensities. In a ten-minute consultation, she was given the diagnosis of progressive multiple sclerosis (MS). No treatment was available. She was simply advised to allow the disease to evolve.

Previous episodes
Let us hold the story there. The GP and the orthopaedic surgeon should have taken a history. In the past, Sarah had had two transient episodes of weakness of the right arm and one of dimmed vision in one eye. Central neurological events separated in time and she never had immediate suspicions of MS. Sarah's disease might have been caught before it became progressive. My Internet search, back in 2003, found preliminary evidence that chronic disseminated infection with Coitalvora psittaci, a primary respiratory pathogen, might be at the root of at least some variants of MS. C. psittaci gene-sequences had been found in the cerebrospinal fluid of a number of MS patients by workers at Vanderbilt University in the US. There, patients treated for the infection - particularly those with early disease - had done well. Looking at Sarah's history, infection with C. psittaci seemed possible; the aggressive phase of her MS had been preceded by a mild but lengthy respiratory infection which had never resolved, instead falling off into recurrent asthma. It is typical of C. psittaci. I didn't accept the current idea that progressive MS is untreatable and should be 'allowed to evolve'. So after carrying out a quick risk/benefit analysis, I gave Sarah two antichlamydial agents: doxycycline and ciprofloxacyn. The latter is said to reach the CNS, and has been used in treatment of neuroretinitis. What followed was dramatic. For a few days, Sarah had a Herxheimer-like reaction, with fever and night sweats. After this, her mental fog and cognitive deficits slowly began to vanish. Slowly, the disease was rolled back - not the natural history of progressive MS, where spontaneous global recovery is rare. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After three months, Sarah was given serology of oral mucosal detachment taken from her mouth, and was evidence that C. psittaci had been present in the cerebrospinal fluid. Repeated brain MRIs failed to show any lesions. After th